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Abstract—We develop and test on real objects a scientifically justified method for monitoring electric
conductivity in living trees which is based on solving the inverse problem of dendrotomography.
For the purpose of nondestructive diagnostics of the wood condition, we propose to determine the
electric anisotropy coefficient of a living tree. We theoretically develop and experimentally confirm
a technique for determining this parameter. We prove that the electric anisotropy coefficient is
independent of the seasonal variations of resistivity and is determined by the system of annual rings
of the tree.
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INTRODUCTION

Low frequency electric tomography is widely used in various branches of science and technology.
This technique is based on noninvasive electric measurements on the surface of the object under study
followed by solving the inverse problem. In result, it is possible to determine and visualize the spatial
distribution of specific electric resistivity inside the object [1, 2].

Some unusual applications of electric tomography are known that aim at studying the electric
properties of objects in nature such as a living tree. In this case, the low frequency electric tomography
is called dendrotomography.

The possibilities of dendrotomography were tested on the beech trees designated for felling. Our
results confirm the applicability of this technique to studying the decay of trees induced by various fungal
infections, as well as humidity and other factors detrimental to forests [3].

Our analysis of the dendrotomography literature allows us to make the following conclusions:

• experiments on living trees aim at detecting and localizing defective parts of the trunk,

• there is no data on the long-term monitoring of the condition of live and sound trees,

• the constructions of interpretation models fail to account for the fact that trees have a thin layer
structure in the radial direction (the annual rings).

Taking all these into account, we formulated the following goals of the present study:

• to inspect the possibilities of dendrotomography basing on isotropic and anisotropic models for the
distribution of specific electric resistivity inside the trunk,

• using the method of dendrotomography, conduct the year-round monitoring of the condition of
a living tree.
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1. THE POTENTIAL OF A POINT SOURCE OF DIRECT CURRENT
ON THE SURFACE OF A CYLINDRICALLY LAYERED MEDIUM

In the construction of a mathematical model of dendrotomography, we should account for the inner
structure of the trunk. The inner isotropic region is the heartwood. The outer region called sapwood
consists of the system of annual rings and is anisotropic as regards the electric properties. As a rule, the
heartwood holds the main store of water and minerals of a tree.

Consider a mathematical model of low frequency electric tomography. Start with the simplest case:
a model with one dividing boundary. Take an infinite cylinder of radius a and suppose that an arbitrary
source of direct current is located outside the cylinder. The source is characterized by the distribution of
the external electric current density �jc. Denote the resistivity of the cylinder and the outer medium by ρi

and ρe respectively.
Introduce the cylindrical coordinate system {r, ϕ, z} whose z-axis coincides with the axis of the

cylinder. Represent the potential ue of the electric field outside the cylinder in the form

ue = u0 + ũe.

Here u0 is the potential of the electric field �jc of external currents in a homogeneous medium with
resistivity ρe. Denote the potential inside the cylinder by ui.

Assuming that the function u0 is known, formulate some boundary value problem for determining the
potentials ũe and ui. It is known that the required functions satisfy the Laplace equation. In the case of
a conducting medium the potential and the normal (radial) component of the electric current density are
continuous on the boundary between the cylinder and the ambient medium. In the vicinity of the source,
the potential ue tends to its value u0 in the homogeneous medium with resistivity ρe, and at infinity ue it
vanishes [5].

Therefore, basing on the uniqueness theorem for the boundary value problems for the Laplace
equation in an inhomogeneous medium, we arrive at the following formulation of the boundary value
problem [6]:

(1) the functions ũe and ui satisfy the Laplace equation

Δu = 0, u =

{
ui, r < a,

ũe, r > a;
(1)

(2) on the boundary (r = a) of the cylinder, we have the boundary conditions
ui = u0 + ũe, (2)

γi

(
∂ui

∂r

)
= γe

(
∂u0

∂r
+

∂ũe

∂r

)
, (3)

where γi = 1/ρi and γe = 1/ρe;
(3) in the vicinity of the source (as R → 0), we have ue → u0;
(4) at the infinite distance from the source (as R → ∞), we have ue → 0.
Define the Fourier image of u with respect to the coordinate z:

u∗(r, ϕ, λ) =

+∞∫
−∞

e−iλzu(r, ϕ, z) dz (4)

u(r, ϕ, z) =
1
2π

+∞∫
−∞

eiλzu∗(r, ϕ, λ) dλ. (5)

Expand u∗ and u∗
0 into the Fourier series with respect to the angular coordinate:

u∗ =
∞∑

n=0

u∗c
n cos nϕ + u∗s

n sinnϕ =
∞∑

n=0

u∗c,s
n

⎛
⎝cos nϕ

sin nϕ

⎞
⎠ , (6)

u∗
0 =

∞∑
n=0

u∗c
0n cos nϕ + u∗s

0n sin nϕ =
∞∑

n=0

u∗c,s
0n

⎛
⎝cos nϕ

sin nϕ

⎞
⎠ . (7)
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The last equalities in the chains (6) and (7) define these brief expressions for the Fourier series used
henceforth. From (1)–(3) we obtain the equation

∂2u∗c,s
n

∂r2
+

1
r

∂u∗c,s
n

∂r
−

(
n2

r2
+ λ2

)
u∗c,s

n = 0 (8)

and the following boundary conditions at r = a:

u∗c,s
in = u∗c,s

0n + ũ∗c,s
en , γi

(
∂u∗c,s

in

∂r

)
= γe

(
∂u∗c,s

0n

∂r
+

∂ũ∗c,s
en

∂r

)
. (9)

The indices in and en mean that the terms of the Fourier series are considered for r < a and r > a
respectively.

A solution to (8) accounting for the behavior of the potential as r → 0 and r → ∞ is of the form

u∗c,s
n =

{
A∗c,s

n In(mr), r < a,

B∗c,s
n Kn(mr), r > a.

(10)

Here m = |λ|, while In(x) and Kn(x) are the modified Bessel functions.

Assume that the source of the external current is pointlike, driven by the direct current of amperage
I and located at the point {r0, ϕ0, z0}. Inserting (10) into (9) and solving the resulting system of linear
equations, we obtain the expression

u(ϕ̇, ż, a) =
I

2π2aγe

∞∑
n=0

2
εn

cos(nϕ̇)

∞∫
0

1
x

In(x)Kn(x)
SI ′n(x)Kn(x) − K ′

n(x)In(x)
cos(xż) dx (11)

for the potential in the case that r = r0 = a, where S = γi/γe, ϕ̇ = ϕ−ϕ0, ż = (z − z0)/a, and x = ma.

Consider the case that ρe = ∞, the source of the current is located on the outer surface of the
cylindrical model (r = a), and inside the cylinder there is another boundary (r = b). In the region
0 < r < b, the medium has resistivity ρ2. Under these conditions, the potential u for r = a is of the
form

u =
I

π

∞∑
n=0

⎡
⎣ +∞∫

0

(
u∗c,s

0n (a) + Ac,s
n In(ma) + Bc,s

n Kn(ma)
)
cos(ma ż) dm

⎤
⎦ ×

⎛
⎝cos nϕ

sin nϕ

⎞
⎠ . (12)

Bc,s
n =

u∗c,s
0n (b) 1

In(mb) −
∂u∗c,s

0n (b)
∂r

1
mSI′n(mb) −

∂u∗c,s
0n (a)
∂r

1
mI′n(ma)

(
1 − 1

S

)
(
1 − 1

S

)
K ′

n(ma)
I′n(ma) − Kn(mb)

In(mb) + 1
S

K ′
n(mb)

I′n(mb)

, (13)

Ac,s
n = −∂u∗c,s

0n (a)
∂r

1
mI ′n(ma)

− Bc,s
n

K ′
n(ma)

I ′n(ma)
, (14)

where S = γi/γ2.

2. AN ASYMPTOTIC EXPANSION OF THE POTENTIAL
AT LARGE DISTANCES FROM THE SOURCE

In the two-layer model of the medium, let us construct an asymptotic representation for the poten-
tial u in the region with the large values of ż. To this end, expand the integrands using the approximate
values [7] of the Bessel functions as x → 0. Then upon integration we obtain the approximate expression

u(ϕ̇, ż, a) ≈ I

πa

1
γe + γi

∞∑
n=0

1
εn

cos(nϕ̇)
1

22n(n!)2
∂2n

∂ż2n

[
1
ż

]
(15)

for the potential in the case that r = r0 = a.
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Consider the ratio fn+1,n of the (n + 1)th and nth terms of the series in (15) assuming that ϕ̇ = 0 and
ż > 1. This yields

fn+1,n =
(2n + 1)(2n + 2)

4ż2(n + 1)2
< 1. (16)

It follows from (16) that, for n � 1, the function fn+1,n is essentially independent of n and decreases
with the growth of ż as 1/ż2. Inspection shows that, for ż > 1, we can with adequate precision restrict
ourselves to taking the first three terms of (15):

u(ż, a) ≈ uas =
I

2πa

1
γe + γi

(
1
ż

+
1

2(ż)3
+

3
4(ż)5

+ · · ·
)

. (17)

Comparison of the values of the asymptotic expansion (17) and the analytic solution (11) for various
ratios S = γi/γe is represented in Table 1 (ϕ̇ = 0). Here, for various values of S and ż, we give in
percentages the differences δ between the exact and approximate values of the potential:

δ = |(u − uas)/uas| · 100%.

Therefore, looking at the table, we can make a conclusion on the limits of applicability of the asymptotic
representation (17).

Table 1. Comparison of exact and asymptotic values of the potential

ż
S

1.01 0.1 1 10 100

1 45.9 47.4 50.1 48.8 46.5
√

2 29.4 30.5 32.0 31.6 31.0

2 24.1 24.6 25.1 24.5 24.1

2
√

2 18.1 19.0 20.2 19.9 19.0

4 8.5 9.6 10.5 9.6 9.1

4
√

2 4.9 5.2 5.7 5.4 5.0

8 1.9 2.1 2.5 2.2 2.1

8
√

2 0.9 1.1 1.2 1.1 1.0

16 0.8 0.9 0.9 0.9 0.8

16
√

2 0.2 0.2 0.3 0.2 0.2

32 0.1 0.1 0.1 0.1 0.1

The data in Table 1 allows us to conclude that, for all practically interesting values of S, the
approximate representation (17) keeping the first three terms of the series can be used for describing
the potential with error of order 1% provided that ż = z/a > 10.

Arguing similarly, we obtain the asymptotic expansion

u ≈ I

πa

1
γ2

∞∑
n=0

1
εn

cos n(ϕ − ϕ0) ×
(

2a2n(1 + S) + b2n(1 − S)
2a2n(1 + S) − b2n(1 − S)

)
1

22n(n!)2
∂2n

∂ż2n

[
1
ż

]
(18)

for the potential (12) in the three-layer model of the medium. Analyzing the results of numerous
computations, we see that in this case the limits of the applicability of (18) are determined by the
condition ż > 10 as well.
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3. A POINT SOURCE OF DIRECT CURRENT LOCATED
ON THE SURFACE OF A MULTI-LAYER CYLINDRICALLY LAYERED MODEL.

ISOTROPIC AND ANISOTROPIC MEDIA

Consider a model of the object under study consisting of k layers. The outer layer is some medium with
the zero value of electric conductivity (like air). The other k − 1 layers are infinite cylinders, one enclosed
into another, of radii a1, a2, . . . , ak−1 and conductivities γ1, γ2, . . . , γk−1. The index k − 1 refers to the
cylinder of the smallest radius, while k = 1, to the largest radius.

Consider the problem of determining the potential ũ1 on the outer boundary r = a1. In order to solve
the Laplace equation, on each boundary we can write two boundary conditions, which gives a system of
2(k − 1) equations with 2(k − 1) constants. Represent this system in the matrix form: MX = U . Here
M is the matrix of modified Bessel functions of order n depending on the product mai for i = 1, . . . , k − 1
and the coefficients Sj = γj/γj−1 for j = 1, . . . , k − 1. The matrix X consists of the column of the
required constants Cc,s

l for l = 1, . . . , 2k − 2. The matrix U is

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u∗c,s
0n (a1)

1
Kn(ma1)

−∂u∗c,s
0n (a1)
∂r

1
K ′

n(ma1)

u∗c,s
0n (a2)

1
Kn(ma2)

∂u∗c,s
0n (a2)
∂r

1
K ′

n(ma2)

0

· · ·

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

In order to find the potential on the boundary, we firstly determine from MX = U the functions Cc,s
2

and Cc,s
3 ; for instance, using the Gaussian elimination. If the values of Cc,s

2 and Cc,s
3 are known then we

can express the potential at r = a1 as

u =
1
π

∞∑
n=0

⎡
⎣ +∞∫

0

(
u∗c,s

0n (a1) + Cc,s
2 In(ma1) + Cc,s

3 Kn(ma1)
)
cos(ma1ż) dm

⎤
⎦ ×

⎛
⎝cos nϕ

sin nϕ

⎞
⎠ , (20)

where ż = (z − z0)/a1.

The solution (20) admits a generalization to the case of an anisotropic model of the medium. Consider
firstly the most general model with the anisotropy of electric conductivity in three coordinates r, ϕ, and z

for each layer but the outer one. Denote the electric conductivity along these coordinates by γj
r , γj

ϕ, and
γj

z respectively (for j = 1, . . . , k − 1). In the case under consideration, the equation for the potential u in
cylindrical coordinates is of the form

γj
r

1
r

∂

∂r

(
r
∂u

∂r

)
+ γj

ϕ

1
r2

∂2u

∂ϕ2
+ γj

z

∂2u

∂z2
= 0. (21)

Applying to (21) the transformations (4) and (6), we obtain

∂2u∗c,s
n

∂r2
+

1
r

∂u∗c,s
n

∂r
−

(
n2

r2

(
Λj

rϕ

)2 + λ2
(
Λj

rz

)2
)

u∗c,s
n = 0, (22)

where
(
Λj

rϕ

)2 = γj
ϕ
/γj

r and
(
Λj

rz

)2 = γj
z/γ

j
r are the electric anisotropy coefficients.
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In the case under consideration, by analogy with (19), the matrix U is of the form

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u∗c,s
0n (a1)

−∂u∗c,s
0n (a1)
∂r

1
mΛ1

rz

u∗c,s
0n (a2)

∂u∗c,s
0n (a2)
∂r

1
mΛ1

rz

0

· · ·

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

In (23), u0 is potential of the electric field �jc of external currents in the homogeneous medium with
conductivity γr1. We should stress that M includes the entries related to the anisotropy of the electric
properties of the medium:

Sj =
γj

r

γj−1
r

Λj
rz

Λj−1
rz

, j = 1, . . . , k − 1.

The matrix X will be the column of required functions Cc,s
l for l = 1, . . . , 2k − 2. As a result we obtain

the required expression for the potential:

u =
1
π

∞∑
n=0

[ +∞∫
0

[
u∗c,s

0n (a1) + Cc,s
2 InΛ1

rϕ

(
mΛ1

rza1

)

+ Cc,s
3 KnΛ1

rϕ

(
mΛ1

rza1

)]
cos

(
mΛ1

rza1ż
)
dm

]⎛
⎝cos nϕ

sinnϕ

⎞
⎠ . (24)

Write an expression for the potential in the case of a three-layer model of the medium, which
describes the real tree structure. Assume that the outer layer (r > a1) possesses the zero conductivity
(like air). The inner isotropic layer (0 < r < a2) has conductivity γi. The intermediate anisotropic layer
(a2 ≤ r ≤ a1) has different electric conductivities γϕ = γz = γt and γr = γn along the coordinates r
and z. In the three-layer model of the medium in question, we express (24) as

u =
1
π

∞∑
n=0

[ +∞∫
0

[
u∗c,s

0n (a1) + Cc,s
2 InΛ(mΛa1)

+ Cc,s
3 KnΛ(mΛa1)

]
cos(mΛa1ż) dm

] ⎛
⎝cos nϕ

sinnϕ

⎞
⎠ . (25)

The functions Cc,s
2 and Cc,s

3 satisfy

Cc,s
3 =

1
m

∂u0
∂r (a2) − St

I′n(ma2)
In(ma2)u0(a2) − α

1
mΛ

∂u0
∂r (a1) 1

InΛ(mΛa1)

StKnΛ(mΛa2)
I′n(ma2)
In(ma2) − αΛK ′

nΛ(mΛa2) + K ′
nΛ(mΛa1)

I′nΛ(mΛa1)

, (26)

Cc,s
2 = − 1

mΛ
∂u0

∂r
(a1)

1
InΛ(mΛa1)

− Cc,s
3

K ′
nΛ(mΛa1)

I ′nΛ(mΛa1)
. (27)

Here

α = ΛI ′nΛ(mΛa2) − StInΛ(mΛa2)/I ′n(ma2)/In(ma2), St = γi/γt,
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Λ =
√

γt/γn is the electric anisotropy coefficient of the medium, u0 is the potential of the electric field �jc
of external currents in the homogeneous medium with conductivity γi.

Let us continue studying the expression (25) for the potential and construct an asymptotic expansion
for this function for large values of ż. Using the above approach to constructing asymptotics, after simple
rearrangements we arrive at the following approximate expression for the potential:

u ≈ I

πa1

1
γt

∞∑
n=0

1
εn

cos n(ϕ − ϕ0)

×
(

2a2nΛ
1 (Λ + St) + a2nΛ

2 (Λ − St)
2a2nΛ

1 (Λ + St) − a2nΛ
2 (Λ − St)

)
1

22nΛ2n+1(n!)2
∂2n

∂ż2n

[
1
ż

]
. (28)

In deriving this relation we assume that the source of external current is a point electrode located on the
outer surface of the three-layer cylinder and fed by a current of amperage I.

Our numerical analysis of the limits of applicability of (28) for the values Λ = 1, 2, 3, 4, 5 allows us to
conclude that, in all practically interesting cases, the approximate expression (28) describes the exact
value of the potential with error at most 1 % provided that ż > 10.

4. DETERMINING THE ANISOTROPY COEFFICIENT
OF THE INTERMEDIATE LAYER IN A LIVING TREE

Consider the problem of determining the anisotropy coefficient of the intermediate layer in a living tree
(a2 ≤ r ≤ a1) on assuming that the measurements of the potential created by a point source of direct
current are taken on the surface of a tree for all values of ϕ and z.

We will solve the inverse problem under the following hypotheses: Assume that the geometric
characteristics a1 and a2 of the object under study are known. Indeed, the radius a1 is determined
by direct measurements, and some estimates for the radius of the heartwood for each tree species are
available in the literature. The situation is quite different regarding the electric characteristics of the
wood. We have no reason to assume known the parameters γt and St of a living tree. In order to collect
this data, we would have to resort to destructive diagnostic methods.

Consider an approach which enables us to eliminate the influence of γt on the measurements. Let
u(z, ϕ = 0) denote the value of the potential taken for ϕ = 0. We will also use the potential u(ϕ, z = 0)
considered for z = 0. Define the function θ as

θ =
u(z, ϕ = 0)
u(ϕ, z = 0)

. (29)

By the structure of (25) and (28), it is easy that θ is independent of γt.
As for the degree of influence of the parameter St on the measurements, look at (28). This parameter

occurs in the numerator and denominator of the fraction in parentheses. Consider the structure of the
fraction and put

p1 = a2nΛ
1 (Λ − St), p2 = a2nΛ

2 (Λ − St).

Then we can write the fraction p12 in parentheses as p12 = (p1 − p2)/(p1 + p2). It is not difficult to verify
that |p12| < 1; thus, the function p12 depends weakly on the parameters Λ and St.

Therefore, the dependence of the potential (28) on the anisotropy coefficient has principally to do with
the parameter Λ which is outside the parentheses in (28).

This result follows from using the asymptotic expression (28) for describing the behavior of the
potential. Verify the validity of this analysis for the function θ in which we use the exact expression for
the potential. To this end, using (25), we calculated the value of θ for a wide range of Λ and St of practical
interest: 1 ≤ Λ ≤ 8 and 0.001 ≤ St ≤ 1000.

The figure shows the dependence of θ on Λ, where all values of the function corresponding to
the various values of St in the range are inside the narrow interval marked by the vertical segments.
Therefore, as a result of numerical simulation, we prove that θ is essentially independent of the value of
St. On this result we base the technique for determining the anisotropy coefficient while solving practical
inverse problems of dendrotomography.
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Fig. 1. The dependence of the values of θ on Λ

5. PHYSICAL EXPERIMENTS IN DENDROTOMOGRAPHY.
STATEMENT AND SOLUTION OF PRACTICAL INVERSE PROBLEMS

5.1. A Laboratory Experiment
We conducted physical experiments in two stages. At the first stage for making laboratory tests we

took a cylindrical vessel with diameter 0.2 m and height 0.4 m. The vessel was filled with a fluid with
resistivity 18.2 Ohm·m. The resistivity of the fluid was measured at 19.4◦C with a Jumo conductometer
(Germany). At the distance of 0.2 m from the bottom of the vessel 16 electrodes of diameter 6 mm were
uniformly spread around the perimeter, providing the galvanic contact with the fluid. The electrodes were
numbered 1, . . . , 16.

Measurements were made using the conventional low frequency geophysical equipment Cikl-VPS
and ANCh-3 produced in Russia. The mean measurement error was 4.5 %. The measurement technique
was as follows: at the first step, the contacts A and B of the current generator were attached to the
electrodes number (1, 2). Using contacts M and N , we measured with microvoltmeters the potential
difference between the pairs of electrodes (3, 4), (4, 5), and so on up to the pair (15, 16). At the next
cycle of measurements, the contacts A and B were attached to the electrodes (2, 3), and the potential
difference was measured sequentially between the pairs (4, 5), (5, 6), . . . , (16, 1). For 16 electrodes, the
total number of measurements is equal to 208. However, by the reciprocity principle, 104 measurements
suffice.

We solved the inverse problem with the laboratory data by fitting. We minimized the mean square
deviation between the model and experimental data. To seek the minimum of the target functional we
used the Nelder–Mead algorithm [8] that is highly reputable for solving practical inverse problems of
electric probing. As the model data, we used the results of calculations using (25)–(27).

A numerical solution of the inverse problem yielded the value of the resistivity of the fluid equal to
16.7 Ohm·m. This value differs by 14 % from the test value. The difference is due to the measurement
error of the signal and the deviation of the shape of the vessel from a cylinder. We should also mention
another reason: neglecting the finite size of the electrodes. Accounting for this size in the models is
a separate problem outside the scope of this article.

5.2. An Experiment on a Living Tree
As the object of study we chose a fir tree of diameter about 25 cm. In order to make this experiment,

we implanted 23 steel electrodes with helical rifling about 6 mm deep into the crust of the tree. The mean
distance between the electrodes along the circumference was 4 sm. The measurements were taken with
the ANCh-3 complex. The technique of measurements remained the same as in the laboratory. We made
six series of measurements, five during the period from June 2005 to November 2005, and one in May
2006. The results of the November 2005 experiment were deemed a failure as regards the precision of
the measurements. This is most likely due to the suspension of the active life of the object of study, and
the resulting rise in the values of the resistivity. We can assume that we actually established the time
boundary between the winter “hibernation” and the spring and summer “awakening” of a living tree.
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5.3. Solving the Inverse Problem

In order to solve the inverse problem and reconstruct the distribution of the resistivity, we used
a numerical algorithm which realizes the solution to the direct problem of dendrotomography presented
in this article. We solved the inverse problem for two classes of models of the electric properties of a living
tree: isotropic and anisotropic models. The use of two classes of models is related to a fact of electric
carotage theory: the equivalence of cylindrically layered anisotropic media to isotropic models [9].

Consider firstly the results of solving the inverse problem in the class of cylindrically layered isotropic
models. The required unknown parameters were: the specific electric resistivity ρi of the heartwood; the
specific electric resistivity ρe of the sapwood; the diameter d2 of the heartwood. The diameter of the
sapwood was assumed equal to the diameter of the trunk. As an initial approximation for the values of
the resistivity parameter, we chose the resistivity of water at normal conditions. The starting value of the
radius of the heartwood is equal to the half radius of the trunk. Upon solving the inverse problem the
mean deviation between theoretical and experimental values was about 8 %. We established the stability
of the solution with respect to the choice of the initial model.

Therefore, we reconstructed the distribution of resistivity in a living tree on assuming that the tree
consists of two principal isotropic layers: heartwood and sapwood. Our results for all five series of
measurements are given in Table 2.

Table 2. Solutions to the inverse problem in the class of isotropic models

Measurement dates ρi, Ohm·m ρe, Ohm·m d2, m

May 2006 26 200 0.095

June 2005 28 127 0.083

July 2005 24 52 0.045

September 2005 27 120 0.073

October 2005 25 145 0.073

Basing on these results, we can elucidate the seasonal life cycle of the tree which begins in May or
June and ends in October. The peak activity of the tree is in July. The tissues exchange microelements
vigorously, which results in a sharp drop (compared to June) in the resistivity and the decreasing radius
of heartwood.

Consider the estimates of the anisotropy coefficient. For all five series of measurements, we numer-
ically calculated the value of the function θ and, using the data depicted, we obtained the value of the
anisotropy coefficient. The mean value of the anisotropy coefficient turned out equal to 1.7, the mean
square error amounted to 9 %. The values of experimental estimates for the anisotropy coefficient for
each of the five dimensions are represented in the figure as centers of the circles. The radius of a circle
indicates the error in determining the corresponding parameter.

The data we present implies that there is an essential absence of the dependence of the electric
anisotropy coefficient of a living tree on the season. This result has physical explanation: the radial
and vertical values of the resistivity change in time synchronously; thus, the anisotropy coefficient is
independent of the seasonal variations of resistivity and is determined by the structure of annual rings of
the tree.
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